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I Introduction and Preliminaries

The purpose of this report is to rephrase the results and approach of the pa-
per, Existence and Nonlinear Stability of Stationary States of the Schrodinger-
Poisson System [1], in the Heisenberg picture of Quantum Mechanics.

To begin, let us state the problem. We consider a large ensemble of
n-charged quantum particles confined to the spatial domain Ω ⊂ R3 that
interact only via the electrostatic field they collectively create. We assume
Ω is bounded with sufficiently smooth boundary. An effective model for this
system is the Hartree problem:

i
∂R

∂t
= [HV , R] (I.1)

HV := −∆ + V (t, x) (I.2)

∆V = −n (I.3)

n(t, x) = R(t, x, x) (I.4)

Here R(t) denotes the density operator of the system, a time-dependent,
hermitian, positive trace class operator acting on the Hilbert space L2(Ω).
Equation (I.1) is the Von Neumann-Heisenberg equation with Hamiltonian
HV . The potential V is a solution to the Poisson equation (I.3) subject to
homogeneous Dirichlet boundary condition:

V (t, x) = 0
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for t > 0, x ∈ ∂Ω. By abuse of notation R(t, x, y) denotes the L2-kernel of the
trace class operator R(t), and its trace is the spatial charge density n(t, x).
We shall refer to this system as the Heisenberg-Poisson System (HP).

We thus consider the solution space for the system to be the set

P := {R : L2(Ω)→ L2(Ω)|R > 0, T rR + Tr(−∆R) <∞}

This system has energy functional

H(R) := Tr(−∆R) +
1

2

∫
|∇VR|2

where VR is related to R by the Poisson equation (I.3). It turns out that this
energy functional will not be sufficient for our analysis, as the total energy
of the system is conserved along solutions but the stationary states are not
critical points of the energy. However, there exist additional conserved quan-
tities, named Casimir functionals [2], created so that a given stationary state
is a critical point for the respectively chosen energy-plus-Casimir functional.
We shall call this functional HC . Let us now define them.

The Casimir functionals will be generated from a class of functions C. A
function f : R → R is of Casimir class C if and only if it has the following
properties:

1) f is continuous with f(s) > 0, s 6 s0 and f(s) = 0, s > s0 for some
s0 ∈ (0,∞)

2) f is strictly decreasing on (−∞, s0] with lims→−∞ f(s) =∞

3) there exists a constants ε > 0 and C > 0 such that for s > 0,

f(s) 6 C(1 + s)−7/2−ε

For a function f ∈ C, we define

F (s) =

∫ ∞
s

f(σ)dσ

for all s ∈ R. This defines a decreasing, continuously differentiable, non-
negative function that is strictly convex on its support. Furthermore we
have the bound:

F (s) 6 C(1 + s)−5/2−ε
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for s > 0. which follows trivially from the third property of f . We may now
define the Casimir energy functional. For a function F defined as a above,
its Legendre-Fenchel transform is defined by

F ∗(s) := sup
λ∈R

(λs− F (λ))

for all s ∈ R. Thus, the Casimir energy functional corresponding to a function
f is defined as:

HC(R) := TrF ∗(−R) + Tr(−∆R) +
1

2

∫
|∇VR|2

Before defining the class of stationary states and moving onto the main results
of the paper, we discuss and prove some technical lemmas which will be
useful.

Lemma 1. Let f ∈ C. Then:

a) For every β > 1 there exists C = C(β) ∈ R such that for s 6 0

F (s) > −βs+ C

b) Let V ∈ H1
0 (Ω) be non-negative on Ω. Then both f(−∆ + V ) and

F (−∆ + V ) are trace class.

Proof of Lemma 1. Proof of a) This follows from condition 2) that allows
f ∈ C, by observing that F is decreasing and convex.
Proof of b) Let (µk) denote the sequence of eigenvalues of −∆ + V , and (µ0

k)
the eigenvalues of −∆. Since V is positive, then by the min-max principle
we have:

µ0
k = min

φ0,...,φN
max
φ
{〈φ, (−∆)φ〉 : φ ∈ span{φ0, . . . , φN}}

≤ min
φ0,...,φN

max
φ
{〈φ, (−∆ + V )φ〉 : φ ∈ span{φ0, . . . , φN}} = µk

where 〈φ, φ〉 = 1. And hence, since F is decreasing,

TrF (−∆ + V ) =
∑
k

F (µk)

≤
∑
k

F (µ0
k) = TrF (−∆)

3



The right hand sum is finite by the well-known quasiclassical bound

TrF (−∆) ≤
∫
F (|ξ|2)dxdξ

and hence F (−∆+V ) is trace class. Since f decays faster than F we conclude
that f(−∆ + V ) is also trace class.

Lemma 2. For ψ ∈ H1
0 (Ω) ∪H2(Ω) with ‖ψ‖2 = 1 and V ∈ H1

0 (Ω), V > 0,
we have

F (〈ψ, (−∆ + V )ψ〉) 6 〈ψ, F (−∆ + V )ψ〉

with equality if ψ is an eigenstate of −∆ + V .

Proof of Lemma 2. We may denote the spectral measure associated with
−∆+V and ψ by σ(dµ). Then we may re-write the inequality in the following
form:

F (

∫
µσ(dµ)) 6

∫
F (µ)σ(dµ)

Using the fact that F is convex then this is directly Jensen’s inequality.

We are now ready to define the class of stationary states. We define a
stationary state the pair (R0, V0) where for x ∈ Ω:

∆V0 = −f(−∆ + V0)(x, x)

(ie. the L2-integral kernel) for some f ∈ C, with Dirichlet boundary condition
V0 = 0 on ∂Ω. In other words, the density operator is defined as

R0 := f(−∆ + V0)

Note that it satisfies the steady-state Heisenberg equation

[HV0 , R0] = 0

We can see that R0 is positive and trace class by Lemma 1.

Lemma 3. Let V ∈ H1
0 (Ω), V > 0. Then

Tr(F ∗(−R)) + Tr(HR) > −Tr[F (H)]

for R ∈ P . We have equality if R = f(H), where recall H = −∆ + V .
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Proof of Lemma 3. First we show the inequality. From the definition of the
Legendre-Fenchel transform, we have

F ∗(−λ) + λµ > −F (µ) (I.5)

Let λk, φk denote the eigenvalues and eigenfunctions of R, respectively. Then,

Tr(F ∗(−R) +HR) =
∑
k

〈φk, (F ∗(−R) +HR)φk〉

=
∑
k

〈φk, (F ∗(−λk) +Hλk)φk〉)

>
∑
k

〈φk,−F (H)φk〉

= −TrF (H)

where to obtain the first inequality we have used (I.5). Hence, we have proved
the inequality. To prove the equality case, observe that if R = f(H) then φk
are also eigenvectors of H as it commutes with R. Denote the eigenvalues of
H by µk. Then,

Tr(F ∗(−R) +HR) =
∑
k

〈φk, (F ∗(−R) +HR)φk〉

=
∑
k

〈φk, (F ∗(−f(µk)) + µkλk)φk〉)

=
∑
k

〈φk,−F (µk)φk〉

= −TrF (H)

using the conjugacy of the L-F transform (ie. F = F ∗∗).

II Stability

We are now ready to discuss the main stability result of the paper. It should
be noted that this is not a direct result on the density operator.

Theorem A. Denote (R0, V0) a stationary state of the HP system, so that
R0 = f(H0) for some f ∈ C, R0 ∈ P . This solution is then nonlinearly
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stable in the following sense: let R(t) denote a solution of the HP system
with initial datum R(0) ∈ P . Then,

1

2
‖∇V (t)−∇V0‖2

2 6 HC(R(0))−HC(R0)

Observe that the right hand side becomes arbitrarily small if R(0) is suffi-
ciently close to R0 in the right topology (**). We may rephrase this result
in terms of the position density using the dual norm:

1

2
‖n(t)− n0‖2

H−1(Ω) 6 HC(R(0))−HC(R0)

Proof of Theorem A. Observe that,

1

2
‖∇V (t)−∇V0‖2

2 =
1

2

∫
|∇V (t)|2 +

∫
∆V (t)V0 +

1

2

∫
|∇V0|2

= HC(R(t))− [TrF ∗(−R(t)) + Tr(−∆R(t))−
∫

∆V (t)V0

− 1

2

∫
|∇V0|2]

= HC(R(t))− [TrF ∗(−R(t)) + Tr(H0)R(t)− 1

2

∫
|∇V0|2]

We now use Lemma 3 twice, the second time as equality (for stationary
solutions) and obtain the bound:

1

2
‖∇V (t)−∇V0‖2

2 6 HC(R(t))− [−TrF (−∆ + V0)− 1

2

∫
|∇V0|2]

= HC(R(t))− [TrF ∗(−R0) + Tr(H0)R0 −
1

2

∫
|∇V0|2]

= HC(R(t))−HC(R0)

III Existence

We now seek to prove the existence of these stationary states as minimizers
of appropriately chosen functionals. We obtain for each f ∈ C a station-
ary state, minimizing a functional directly derived from the corresponding
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Casimir-energy functional. We first derive this corresponding energy func-
tional, and then prove the existence of stationary states.

We first make use of the saddle-point principle and for σ ∈ R lagrange
multiplier define the functional

G(R, V, σ) := TrF ∗(−R) + Tr[F (−∆ + V )R]− 1

2

∫
|∇V |2 + σ(TrR− Λ)

= TrF ∗(−R) + Tr[F (−∆ + V + σ)R]− 1

2

∫
|∇V |2 − σΛ

where Λ can be interpreted as the total charge. Observe that the function
f(· + σ) is still Casimir class C. Thus by Lemma 3 we obtain a minimized
functional over R with minimizer R0 = f(−∆ + V + σ), since

G(R, V, σ) > −TrF (−∆ + V + σ)− 1

2

∫
|∇V |2 − σΛ

We thus define the functional

Φ(V, σ) := inf
R
G(R, V, σ) = G(R0, V, σ)

= −1

2

∫
|∇V |2 − Tr[F (−∆ + V + σ)]− σΛ

The main existence result is constructing for each state relation f ∈ C
and total charge Λ > 0 a unique maximizer of the functional Φ and showing
that this is a stationary state of the HP system. In order to prove this result
we shall make use of a few standard results in the minimization of convex
functions. Our reference will be Ekeland-Temam [3].

Lemma 4 (Lemma 2.1 in Chapter 1 of [3]). Consider a function F defined
on a Banach space V . If F in a neighbourhood of u ∈ V is convex and
bounded above by a finite constant, then F is continuous at u.

Proof of Lemma 4. By translation, without loss of generality we can assume
u = 0 and F (0) = 0. Let U be a neighbourhood of the origin such that
F (u) 6 a <∞ for all u ∈ U . Define the set

W = U ∩ −U

where −U is the symmetric reflection of U around the origin. Let ε ∈ (0, 1).
If v ∈ εW , then by the convexity of F , we have two possibilities:
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If v
ε
∈ U then F (v) 6 (1− ε)F (0) + εF (v

ε
) 6 εa

If −v
ε
∈ U then F (v) > (1 + ε)F (0)− εF (−v

ε
) > −εa

Thus we have that |F (v)| 6 εa for all v ∈ εW , and so continuity of F at
u = 0 follows.

Lemma 5 (Proposition 1.2 in Chapter 2 of [3]). Assume F is a function, de-
fined on a domain Ω in a reflexive Banach space V convex, lower-semicontinuous
and proper. Then, if the domain is bounded or F is coercive, ie

limF (u)→∞ as ‖u‖ → ∞

then infu F (u) has a solution, which is unique if F is strictly convex.

Proof of Lemma 5. Existence: Let {uα} be a minimizing sequence for F , ie

F (uα)→ inf
u
F (u) = a as α→∞

We want to show that α 6= −∞. Note that {uα} is bounded in V . This
follows directly from the fact that the domain Ω is bounded, or from the fact
that the sequence F (uα) is bounded above from coercivity. Thus, we have a
weakly convergent subsequence uαi

(recall that we assumed V reflexive) in
V to u ∈ Ω. It follows that since F is convex it is also lower-semicontinuous
on V with the weak topology (we shall use this fact without proof). Hence,

F (u) 6 lim inf
αi→∞

F (uαi
) = a

So, u is a minimizer.
Uniqueness If we have two different minimizers u1 and u2, then since the

set of solutions to the minimization problem is convex (and possibly empty
- again, a fact we shall use without proof, although the proof is not difficult)
then 1

2
(u1 + u2) is also a minimizer. Hence, if F is strictly convex, by this

strict convexity we have:

F (
1

2
(u1 + u2)) <

1

2
[F (u1) + F (u2)] = a

so we arrive at a contradiction. Thus, there cannot be more than one mini-
mizer if F is strictly convex.
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We are now ready to state the main existence theorem. Consider only
non-negative potentials, using the notation H1

0,+ := {V ∈ H1
0 (Ω) : V >

0}, where recall H1
0 is the space of H1 functions with Dirichlet boundary

conditions on δΩ (this interpretation is valid in light of considering domains
Ω with sufficiently smooth boundary).

Theorem B. For f ∈ C and Λ > 0, the functional

Φ(V, σ) : H1
0,+(Ω)× R→ R

Φ(V, σ) := −1

2

∫
|∇V |2 − Tr[F (−∆ + V + σ)]− σΛ

is continuous, strictly concave, bounded from above and coercive. In par-
ticular there exists a unique maximizer of (V0, σ0) of Φ. The corresponding
density operator R0 := f(−∆ + V0 + σ0) is a stationary state of the HP
system with TrR0 = Λ and R0 ∈ P .

Proof of Theorem B. Φ is strictly concave: First observe that the first term
is concave as the term

∫
|∇V |2 is convex. Indeed, for all α ∈ [0, 1]:∫

|∇(αV1 + (1− α)V2)|2 =

∫
|α∇V1|2 + 2α∇V1 · (1− α)∇V2 + |(1− α)∇V2|2

6
∫
|α∇V1|2 + |(1− α)∇V2|2

<

∫
α|∇V1|2 + (1− α)|∇V2|2

since α, (1 − α) are both less than or equal to one. The third term −σΛ
is obviously concave. Thus, it remains to show the strict concavity of the
second term, ie. the strict convexity of Tr[F (−∆ + V + σ)]. We make use
of the fact that F is convex. Let (V1, σ1), (V2, σ2) ∈ H1

0,+ ×R and α ∈ (0, 1).
To simplify notation, denote −∆ + Vi + σi by Hi. Denote the sequence of
eigenstates of αH1 + (1 − α)H2 by (ψk). Then, using the orthonormality of
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eigenfunctions to re-insert them inside F ,

Tr[F (αH1 + (1− α)H2)] =
∑
k

〈ψk, F (αH1 + (1− α)H2)ψk〉

=
∑
k

F (〈ψk, (αH1 + (1− α)H2)ψk〉)

6
∑
k

αF (〈ψk, H1ψk〉) + (1− α)F (〈ψk, H2ψk〉)

6 αTr[F (H1)] + (1− α)Tr[F (H2)]

If we have equality in this estimate, then by the strict convexity of F on its
support,

〈ψk, F (H1)ψk〉 = 〈ψk, F (H2)ψk〉
so thus V1 = V2 and σ1 = σ2, so we obtain strict convexity of the term
Tr[F (−∆ + V + σ)].

Φ is coercive and bounded from above: We seek the show that Φ is coer-
cive:

Φ→ −∞ as ‖V ‖2
H1

0
and |σ| → ∞

Observe that F is non-negative for all values in its domain. Hence,

Φ 6 −C2‖V ‖2
H1

0
− σΛ (III.1)

where we have used Poincare’s inequality. The conditions follow except in the
case that σ < 0 as |σ| → ∞. In this case we require an additional inequality.
Consider the ground state energy of −∆ +V denoted by µV . Then µV is the
solution of the variational problem:

µV = inf
φ∈H1

0 ,‖φ‖2=1

∫
(−|∇φ|2 + V |φ|2)

We thus obtain a relatively simple bound for µV by choosing φ = 1√
V olΩ

, so

µV 6
1

V olΩ

∫
V 6 C1‖V ‖H1

0

Now, using the fact that F is non-negative,

Φ 6 −1

2

∫
|∇V |2 − F (−µV + σ)− σΛ

6 −1

2

∫
|∇V |2 + (β − Λ)σ + βµV − C(β)
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where for the second inequality we have used part a) of Lemma 1 for σ 6
−µV , choosing β > λ. Then, combining this with the bound on µV and apply
Poincare’s Lemma again, we have our second inequality on Φ:

Φ 6 −C2‖V ‖2
H1

0
+ C3‖V ‖H1

0
+ (β − Λ)σ + C4 (III.2)

for σ 6 −C1‖V ‖H1
0
. Observe that all the constants are positive, including

β − Λ. Hence, it now follows that Φ is coercive. We can conclude Φ is
bounded from above in both cases. In the case where σ > 0, we have the
bound Φ 6 0 via equation (III.1). Similarily, in the negative case we can use
equation (III.2) to obtain the bound

Φ 6
C3

2C2

+ C4

Hence Φ is bounded from above.
Existence of a unique Maximizer : We seek to use Lemma 5 directly. We

may conclude the existence of a unique maximizer of Φ(V, σ) by showing it is
additionally upper semi-continuous. We actually obtain local continuity via
Lemma 4. In order to do so we seek to show that Φ is concave and bounded
below by a finite constant. We have concavity from previous arguments, and
local boundedness for the first and last terms is obvious. For the trace term,
recall that F (−∆ + V + σ) is trace-class as remarked previously, and hence
the trace term is bounded below. Thus we have the existence of a unique (by
the strict concavity of Φ) maximizer of Φ(V, σ), which we denote (V0, σ0).

Corresponding density operator is a Stationary State: The corresponding
density operator is defined by

R0 := f(−∆ + V0 + σ0)

First observe the stationary problem is now:

∆V0 = −f(−∆ + V0 + σ0)(x, x)

with Dirichlet boundary conditions. Since V0 is a maximizer of Φ(·, σ0) the
above equation amounts to the E-L equation for Φ in the variable V :

0 =
dΦ(V, σ0)

dV

∣∣∣
V=V0

= Re

∫
(∆V0(x) + f(−∆ + V0 + σ0)(x, x))
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Thus (R0, V0) is a stationary state. We also have −∆R0 trace-class hence
Tr(−∆R0) is finite. It thus follows that R0 ∈ P . On the other hand, the
E-L equations in σ yield:

0 =
dΦ(V0, σ)

dσ

∣∣∣
σ=σ0

= Tr[f(−∆ + V0 + σ0)]− Λ

= TrR0 − Λ

where we used the fact that F ′ = −f . Hence, TrR0 = Λ.
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